Fractions of a number : HALF

Shaded part is **one** part out of two equal parts. This can be written as a fraction like this:

- 1 This **one** belongs to the shaded part
- This two belongs to the total number of equal parts inside the rectangular shape

Fraction of a number:	Finding the answer by shading the shape:	How can you use your 2 times tables to answer the question:
1 of 2 =	(Total of 2 equal parts)	How many 2s in 2 $2 \times \square = 2$
$\frac{1}{2} \text{of } 4 =$	(Total of 4 equal parts)	How many 2s in 4 $2 \times \square = 4$
1 of 6 =	(Total of 6 equal parts)	How many 2s in 6 $2 \times \boxed{} = 6$
1 of 8 =	(Total of 8 equal parts)	How many 2s in 8 $2 \times \square = 8$
$\frac{1}{2}$ of 14 =		How many 2s in 14 $2 \times \boxed{} = 14$
$\frac{1}{2}$ of 22 =		How many 2s in 22 $2 \times \boxed{} = 22$

Fractions of a number : QUARTER

Shaded part is **one** part out of four equal parts. This can be written as a fraction like this:

- 1 ← This **one** belongs to the shaded part
- 4 This four belongs to the total number of equal parts inside the rectangular shape

Fraction of a number:	Finding the answer by shading the shape:	How can you use the 4 times tables to answer the question:
$\frac{1}{4} \text{ of } 4 =$	(Total of 4 equal parts)	How many 4s in 4 $4 \times \boxed{} = 4$
1 of 8 =	(Total of 8 equal parts)	How many 4s in 8 $4 \times \boxed{} = 8$
1 of 12 =	(Total of 12 equal parts)	How many 4s in 12 $4 \times \boxed{} = 12$
$\frac{1}{4}$ of $\frac{16}{4}$		How many 4s in 16 $4 \times \boxed{} = 16$
$\frac{1}{4}$ of 32 =		How many 4s in 32 $4 \times \boxed{} = 32$
$\frac{1}{4}$ of 48 =		How many 4s in 48 $4 \times \boxed{} = 48$

Fractions of a number: Lots of QUARTERS

Shaded part is **one** part out of four equal parts. This can be written as a fraction like this:

1 ← This **one** belongs to the shaded part

4 This four belongs to the total number of equal parts inside the rectangular shape

Fraction of a number:	Finding the answer by shading the shape:	How can you use your times tables to answer the question:
$\frac{2}{4} \text{ of } 4 =$	(This means two lots of quarters inside a shape with 4 equal parts, Shade in 2 out of every 4 parts)	$\frac{2}{4}$ of 4 is the same as 2 lots of $(\frac{1}{4}$ of 4) $2 \times (\text{How many 4s in 4})$
$\frac{3}{4}$ of $4 =$	(This means three lots of quarters inside a shape with 4 equal parts, Shade in 3 out of every 4 parts)	$\frac{3}{4}$ of 4 is the same as 3 lots of $(\frac{1}{4}$ of 4) 3 x (How many 4s in 4)
1 of 8 =	(This means one lots of quarters inside a shape with 8 equal parts, Shade in 1 out of every 4 parts)	$\frac{1}{4}$ of 8 is the same as 1 lot of $(\frac{1}{4}$ of 8) 1 x (How many 4s in 8)
$\frac{2}{4} \text{ of } 8 =$	(This means two lots of quarters inside a shape with 8 equal parts, Shade in 2 out of every 4 parts)	$\frac{2}{4}$ of 8 is the same as 2 lots of $(\frac{1}{4}$ of 8) $2 \times (\text{How many 4s in 8})$
$\frac{3}{4} \text{ of } 8 =$	(This means three lots of quarters inside a shape with 8 equal parts, Shade in 3 out of every 4 parts)	$\frac{3}{4}$ of 8 is the same as 3 lots of $(\frac{1}{4}$ of 8) 3 x (How many 4s in 8)

Fractions of a number : FIFTH

Shaded part is **one** part out of five equal parts. This can be written as a fraction like this:

1 ← This **one** belongs to the shaded part

5 This five belongs to the total number of equal parts inside the rectangular shape

Fraction of a number:	Finding the answer by shading the shape:	How can you use the 5 times tables to answer the question:
$\frac{1}{5} \text{ of } 5 =$	(Total of 5 equal parts)	How many $5s$ in 5 $5 \times \boxed{} = 5$
$\frac{1}{5} \text{ of } 10 =$	(Total of 10 equal parts)	How many 5s in 10 $5 \times \boxed{} = 10$
$\frac{1}{5}$ of 15 =	(Total of 15 equal parts)	How many 5s in 15 $5 \times \boxed{} = 15$
$\frac{1}{5} \text{ of } 25 =$		How many 5s in 25 $5 \times \square = 25$
$\frac{1}{5} \text{ of } 40 =$		How many 5s in 40 $5 \times \boxed{} = 40$
$\frac{1}{5} \text{ of } 55 =$		How many $5s$ in 55 $5 \times \boxed{} = 55$

Fractions of a number: Lots of FIFTHS

Shaded part is **one** part out of five equal parts. This can be written as a fraction like this:

1 This **one** belongs to the shaded part

5 This five belongs to the total number of equal parts inside the rectangular shape

Fraction of a number:	Finding the answer by shading the shape:	How can you use your times tables to answer the question:
2 of 5 =	(This means two lots of fifths inside a shape with 5 equal parts, Shade in 2 out of every 5 parts)	$\frac{2}{5}$ of 5 is the same as 2 lots of $(\frac{1}{5}$ of 5) 2 x (How many 5s in 5)
$\frac{3}{5}$ of $5 =$	(This means three lots of fifths inside a shape with 5 equal parts, Shade in 3 out of every 5 parts)	$\frac{3}{5}$ of 5 is the same as 3 lots of $(\frac{1}{5}$ of 5) 3 x (How many 5s in 5)
$\frac{4}{5}$ of $5 =$	(This means four lots of fifths inside a shape with 5 equal parts, Shade in 4 out of every 5 parts)	4 x (How many 5s in 5)
$\frac{2}{5} \text{ of } 10 =$	(This means two lots of fifths inside a shape with 10 equal parts, Shade in 2 out of every 5 parts)	$\frac{2}{5}$ of 10 is the same as 2 lots of $(\frac{1}{5}$ of 10) $2 \times (\text{How many 5s in 10})$
$\frac{3}{5} \text{ of } 10 =$	(This means three lots of fifths inside a shape with 10 equal parts, Shade in 3 out of every 5 parts)	3 x (How many 5s in 10)

Fractions of a number: Lots of TENTHS

Shaded part is **one** part out of ten equal parts. This can be written as a fraction like this:

1 ← This **one** belongs to the shaded part

10← This ten belongs to the total number of equal parts inside the rectangular shape

Fraction of a number:	Finding the answer by shading the shape:	How can you use your times tables to answer the question:
$\frac{2}{10}$ of $\frac{10}{10}$ =	(This means two lots of tenths inside a shape with 10 equal parts, Shade in 2 out of every 10 parts)	$\frac{2}{10}$ of 10 is the same as 2 lots of ($\frac{1}{10}$ of 10) $2 \times \text{(How many 10s in 10)}$
$\frac{3}{10}$ of 20 =	(This means three lots of tenths inside a shape with 20 equal parts, Shade in 3 out of every 10 parts)	$\frac{3}{10}$ of 20 is the same as 3 lots of ($\frac{1}{10}$ of 20) $3 \times \text{(How many 10s in 20)}$
$\frac{4}{10}$ of 20 =	(This means four lots of tenths inside a shape with 20 equal parts, Shade in 4 out of every 10 parts)	$\frac{4}{10}$ of 20 is the same as 4 lots of ($\frac{1}{10}$ of 20) 4 x (How many 10s in 20)
$\frac{2}{10}$ of $\frac{30}{10}$ =	(This means two lots of tenths inside a shape with 30 equal parts, Shade in 2 out of every 10 parts)	$\frac{2}{10}$ of 30 is the same as 2 lots of ($\frac{1}{10}$ of 30) 2 x (How many 10s in 30)
$\frac{7}{10}$ of $40 =$	(This means seven lots of tenths inside a shape with 40 equal parts, Shade in 7 out of every 10 parts)	$\frac{7}{10}$ of 40 is the same as 7 lots of ($\frac{1}{10}$ of 40) 7 x (How many 10s in 40)

Fractions as "LOTS OF"

This shape has half of it coloured in.

1 lot of This means here, there is ONE lot of a half.

Here you can see that the other half of the shape has been coloured in.

This means here, there is ONE lot of a half.

7 2 It does not matter which half has been coloured in. I lot of

Here both the halves are coloured in.

2 lots of In Maths we can say we have 2 lots of halves.

This means here, This shape has a quarter of it coloured in. there is ONE lot of a quarter.

Here you can see that one of the other quarters has been coloured in. It still means, there is ONE lot of a quarter. It does not matter which quarter has been coloured in.

Here TWO of the quarters have been coloured in.

lots of quarters.

 $2 \log s$ of $\frac{1}{4}$ this is the same as

In Maths we can say we have

Here THREE of the quarters have been coloured in.

In Maths we can say we have 3 lots of quarters.

3 lots of
$$\frac{1}{4}$$
 this is the same as $\frac{3}{4}$

Here all FOUR of the quarters have been coloured in. In Maths we can say we have 4 lots of quarters.

$$4$$
 lots of $\frac{1}{4}$